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Abstract
A previous proof of non-existence of tokamak equilibria with purely poloidal
flow within macroscopic theory (Throumoulopoulos et al 2006 Phys. Plasmas
13 122501) motivated this microscopic analysis near the magnetic axis for
toroidal and ‘straight’ tokamak plasmas. Despite the new exact solutions of
Vlasov’s equation on the magnetic axis found here, the structure of macroscopic
flows remains elusive. However, the treatment within a toroidal system of
orthogonal coordinates and comparison with the straight case, which reveals
the importance of toroidicity, is encouraging.

PACS numbers: 51.10.+y, 52.65.Ff, 52.55.−s, 52.55.Fa

1. Introduction

There are a number of publications on kinetic steady states with flow in the framework
of Vlasov [1–6], gyrokinetic [7, 8] and collissional [9] theories. For a tokamak plasma
collisionless steady state solutions are usually based on the two known constants of motion:
the energy and the angular momentum conjugate to the ignorable coordinate. For this reason,
the majority of the above-referenced papers deals with toroidal flows [2–4, 6, 7]. To construct
axisymmetric equilibria with flows of the arbitrary direction in toroidal geometry, all four
constants of motion are generally required and consequently self-consistent solutions of the
Maxwell–Vlasov equations. This remains a far from completely solved problem.

In the framework of the macroscopic (magnetohydrodynamic) theory, some time ago
(see [10, 11]), it was possible to prove non-existence of tokamak equilibria with purely
poloidal incompressible flow. Recently, an extension to compressible plasmas appeared in
[12] including the Hall term and pressure anisotropy. The proof for the incompressible case
given in [10, 11] was global, while the recent proof [12] is limited to the neighbouring of the
magnetic axis through a kind of Mercier expansion.

This last result motivated the idea to extend, in the present study, the analysis to Vlasov–
Maxwell equations. The major part of the study concerns considerations near the magnetic
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axis. An important ingredient is to write the Vlasov equation in cylindrical coordinates in
a tokamak geometry, which simplifies the subsequent analysis. We use for this purpose the
calculation done in an old ICTP report [13] where the Vlasov equation is written in arbitrary
orthogonal coordinates.

In section 2 the expression of the Vlasov equation is obtained in toroidal geometry. In
section 3 the ODEs of the characteristics are derived and certain constants of motion are
constructed on the magnetic axis in connection with the question of toroidal and poloidal
flows. Section 4 specializes to the respective problem for ‘straight tokamaks’. Toroidal and
cylindrical equilibria with flows away from the axis are the subjects of sections 5 and 6,
respectively. Section 7 is left for discussion and conclusions.

2. Vlasov equation in orthogonal coordinates

As explained in [13] we consider a general system of orthogonal coordinates x1, x2, x3 with
the metric ds2 = g11(dx1)2 + g22(dx2)2 + g33(dx3)2 and unit vectors ei = ∇xi

|∇xi | , where i goes
from 1 to 3. The velocity vector of a ‘microscopic’ fluid element is then projected on the unit
vectors ei as

v = viei , (1)

where the components vi are independent of space variables. It is recalled that the Vlasov
equation is an approximation to the N-particles Liouville equation, which replaces the N
particles by a continuum. This is sometimes termed ‘fluid approximation’. The word
microscopic we used has precisely this meaning. It refers to the ‘microscopic fluid’ with
‘microscopic velocity’ v. The total derivative of v is

∂v
∂t

+ v·∇v = E + v × B, (2)

where E and B are the electric and magnetic fields consistent with Maxwell equations and the
charge to mass ratio e

m
is set to 1. Note that, though the velocity components do not have a

spatial dependence, the convective derivative in equation (2) in general does not vanish acting
on the basis vectors of the coordinate system. Projecting (2) on the unit vectors we obtain

dvi

dt
= ei · (E + v × B) + ei · v × ∇ × v. (3)

Finally, the Vlasov equation in orthogonal coordinates is given by
∂f

∂t
+ v · ∇f + ei · (E + v × B)

∂f

∂vi
+ (ei · v × ∇ × v)

∂f

∂vi
= 0, (4)

where f is a function of the xi, vi and time while v is given by equation (1). For more details
see [13]. f stays here for the ion distribution, while the distribution function for the electrons
is governed by an equation similar to equation (4).

Let us now consider equation (4) in toroidal geometry by specializing on cylindrical
coordinates x1 = r, x2 = φ, x3 = z. The coordinate φ corresponds to the toroidal direction
and r and z represent the poloidal plane. Then ∇× ei = 0 for i = 1 and 3 and ∇× e2 = e1×∇φ.
If we replace indices 1, 2, 3 by r, φ, z, then we have ∇ × v = vφer × ∇φ and

v × ∇ × v = −vrvφeφ

r
+

(vφ)2er

r
. (5)

So the last term of equation (4) becomes
[

(vφ)2

r

∂f

∂vr − vrvφ

r

∂f

∂vφ

]
. Setting B = eφBφ = eφ

I
r

near
the axis and ∂f

∂t
= 0 for the steady state, equation (4) reads

v · ∇f + (ei · ∇�)
∂f

∂vi
− [vzI − (vφ)2]

r

∂f

∂vr
+

vrI

r

∂f

∂vz
− vrvφ

r

∂f

∂vφ
= 0. (6)
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Assuming ∇f = ∇� = 0 on the axis the final equation to solve is

−[vzI − (vφ)2]
∂f

∂vr
− vrvφ ∂f

∂vφ
+ vrI

∂f

∂vz
= 0. (7)

3. ODEs for characteristics

Let us start with the simpler case I = 0, then the characteristics of equation (7) are given by
the solution of

− dvr

(vφ)2
= dvφ

vrvφ
, (8)

whose solution is (vr)2 + (vφ)2 = C. Since f = f (C, vz) = f [((vr)2 + (vφ)2), vz] on the
axis we obtain for the toroidal flow∫

vφf d3v = 0, (9)

which means zero toroidal flow on the axis.
For I �= 0 the characteristics are given by

− dvr

vzI − (vφ)2
= − dvφ

vrvφ
= dvz

vrI
. (10)

The last equality delivers C1 = vz +I ln|vφ|, the second characteristic being the particle energy
C2 = (vr)2 + (vφ)2 + (vz)2. C1 is ‘antisymmetric’ in vz but symmetric in vφ , which leads to∫

vφf (C1, C2) d3v = 0,

∫
vzf (C1, C2) d3v �= 0. (11)

It means that on the magnetic axis the φ-flow is zero while the z-flow is finite. This is
not acceptable because in tokamaks the magnetic surfaces are well-defined toroidal nested
surfaces which degenerate to a close toroidal line on the magnetic axis. This and the fact that
in the framework of the macroscopic theory the velocity shares the same surfaces with the
magnetic field (see for example [11]) imply that both the z and r components of the poloidal
flow should vanish on the magnetic axis. Because of the closeness and nesting of the poloidal
velocity lines around the axis this vanishing must hold irrespective of the inertial frame of
reference, especially the one for which the electric field on the axis is zero as assumed before
equation (7). In an attempt to overcome this situation we relax the assumption ∇f = 0 on the
axis. Reconsideration of the ODEs for characteristics then yields a known additional constant
of motion on the axis, i.e. the angular momentum conjugate to the ignorable coordinate φ:
rvφ = C3. The fourth constant of motion is not obtainable analytically, while C1 and C2 remain
unaffected. The persistence of C1 gives rise to the question why the above consideration on the
axis results in unacceptable poloidal flows thereon. Possible explanations are the following.

(i) The picture we obtained is not complete because of the missing fourth constant of motion.
(ii) The problem relates crucially to the toroidicity because, as will be shown in section 4,

poloidal flows are eliminated on the axis by a similar kinetic analysis in plane geometry.
The z-flow found here is the Vlasov expression of the ∇B-drift of the particle gyrocentre,
which is unavoidable in toroidal geometry but vanishes in plane geometry. Also, it is
noted that the toroidicity plays an important role in the proof of the non-existence of
tokamak equilibria with purely poloidal flows in the framework of macroscopic theory
[12]. The unacceptable z flows on the axis in connection with C1 is an indication of
possible extension of this proof in the framework of kinetic theory. Note that though
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distribution functions of the form f (C2, C3) can lead to purely toroidal flows, they cannot
shade light on the question of purely poloidal flows.

(iii) The above analysis does not take into account the macroscopic property of coincidence
of the flow surfaces with the magnetic surfaces which may play a special role in toroidal
geometry. To possibly recover this result in the context of kinetic theory a self-consistent
treatment of Vlasov and Maxwell equations away from the axis is necessary. This remains
a tough unsolved problem.

(iv) Collisions may damp unaccepted flows and therefore a collisional kinetic equation may
be appropriate instead of the Vlasov equation (see also section 7).

4. ‘Straight’ tokamaks

The straight tokamaks do have magnetohydrodynamic solutions with purely poloidal flow as
known from previous work [14]. For the purpose of a microscopic theory an appropriate
coordinate system is the Cartesian one x1 = x, x2 = y, x3 = z so that the toroidal angular
coordinate φ is replaced by z and the toroidal field I by Bz. It is clarified here that though
there is no toroidicity, we keep the terms toroidal and poloidal in connection with the axial
direction z and the perpendicular (x, y) plane, respectively. Since ∇ × ei vanishes for all i,
the term v × ∇ × v in equation (4) disappears.

For the steady state with ∇� = 0 but finite Bz and ∇f on the axis, equation (7) is replaced
by

vx ∂f

∂x
+ vy ∂f

∂y
+ vyBz ∂f

∂vx
− vxBz ∂f

∂vy
= 0, (12)

whose characteristics are given by

dx

vx
= dy

vy
= dvx

vyBz
= − dvy

vxBz
. (13)

The solution of equation (13) is C1 = (vx)2 + (vy)2, vx − Bzy = C2 and vy + Bzx = C3

where (x, y) = (0, 0) on the axis. In contrast to the situation in section 3, C1, C2 and C3 are
decoupled from the fourth constant of motion vz = C4 due to the lack of toroidicity. Therefore
distribution functions of the form f = f (C1, C2, C3) can lead to purely poloidal flows near the
axis irrespective of the cross section shape in consistence with [14]. Also, circular cylindrical
equilibria with purely poloidal flows at any radial point are constructed in section 6.

5. Consideration away from axis in toroidal geometry

Since in the presence of toroidicity consideration on the axis does not provide any information
on the existence of purely poloidal flows, in this section we consider the problem at an arbitrary
spatial point. To this end, a useful system of orthogonal coordinates for axisymmetric equilibria
consists of the distance ρ to the circular magnetic axis with radius R, the angle θ around the
magnetic axis and the angle φ around the axis of symmetry. The coordinates φ and θ are
associated with the toroidal and poloidal directions, respectively. This system is particularly
convenient for treatment near the axis where it is known that the shape of magnetic surfaces
is circular or elliptical. The metric is given by

ds2 = dρ2 + ρ2 dθ2 + (R + ρ cos θ)2 dφ2. (14)

From the coefficients of metric (14) we can, similarly to sections 2 and 3, compute the physical
components of ∇ × ei ,∇ × v, the magnetic field B in terms of the components of the vector
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potential A as well as the ∇ operator. Vlasov equation (4) for ∇� = 0 takes now the form

vρ ∂f

∂ρ
+

vθ

ρ

∂f

∂θ
+ (vθBφ − vφBθ)

∂f

∂vρ
+ (vφBρ − vρBφ)

∂f

∂vθ
+ (vρBθ − vθBρ)

∂f

∂vφ

+

(
(vθ )2

ρ
+

(vφ)2 cos θ

R + ρ cos θ

)
∂f

∂vρ
−

(
(vφ)2 sin θ

R + ρ cos θ
+

vρvθ

ρ

)
∂f

∂vθ

+ vφ

(
− vρ cos θ

R + ρ cos θ
+

vθ sin θ

R + ρ cos θ

)
∂f

∂vφ
= 0. (15)

The ODEs for characteristics are
dρ

vρ
= ρ dθ

vθ
= dvρ

vθBφ − vφBθ + (vθ )2

ρ
+ (vφ)2 cos θ

R+ρ cos θ

= dvθ

vφBρ − vρBφ − vθ vρ

ρ
− (vφ)2 sin θ

R+ρ cos θ

= dvφ

vρBθ − vθBρ − vφvρ cos θ
R+ρ cos θ

+ vφvθ sin θ
R+ρ cos θ

, (16)

with

Bρ = 1

ρ

∂Aφ

∂θ
− Aφ sin θ

R + ρ cos θ
, (17)

Bθ = −∂Aφ

∂ρ
− Aφ cos θ

R + ρ cos θ
, (18)

Bφ = 1

ρ

(
∂(ρAθ)

∂ρ
− ∂Aρ

∂θ

)
. (19)

6. Cylindrical limit: R infinite, ∂f
∂θ

= 0

In this limit equations (16) for the characteristics can be integrated to deliver the known first
integrals

C1 = vφ −
∫

Bθ dρ = vφ + Aφ, (20)

C2 = (vρ)2 + (vθ )2 + (vφ)2, (21)

C3 = ρ

(
vθ +

∫
Bφ dρ

)
= ρ(vθ + Aθ). (22)

Note that the ‘toroidal’ coordinate φ and the poloidal coordinate θ represent in this limit
the axial and azimuthal directions. The general solution of the Vlasov equation is then
f = f (C1, C2, C3) permitting general macroscopic flows in axial and azimuthal directions
consistent with macroscopic theory [14]. In particular, distribution functions of the forms
f = f (C1, C2) and f (C2, C3) can yield purely toroidal and purely poloidal flows, respectively.

It turns out that for R finite and ∂f

∂θ
�= 0 only two characteristics out of four can be found

explicitly C1 = (R + ρ cos θ)(vφ + Aφ) and C2 as in (21). We made many trials including
the use of Mathematica to find the remaining constants C3 and C4 without success even near



F636 Fast Track Communication

the magnetic axis in the simplest case of circular magnetic surfaces (rAφ ∝ ρ2) and Bφ = 0.
Since C1 and C2 cannot deliver poloidal flows, we expect that the knowledge of C3 and C4

may give us a hint or a microscopic proof of non-existence of tokamaks with purely poloidal
flow. This hope is consistent with the expected complexity of C3 and C4, which may have to
depend upon vθ , vφ and vρ , not only upon vφ or vθ as in (20) and (22), respectively. Recall
also the crucial role of toroidicity as already revealed in sections 3 and 4.

7. Discussion and conclusions

A result of section 3 related to the conservation of energy and the constant of motion C1 on
the axis has obliged us to change the assumptions leading from equation (6) to equation (7),
i.e. ∇f �= 0 instead of zero thereon. Then, in the case of straight equilibria of arbitrary cross
section complete construction of all four constants of motion implies that purely poloidal flows
near the axis are possible. In the presence of toroidicity and ∇f �= 0 on the axis, however, the
special canonical φ-momentum solution leads naturally to toroidal flows but not to poloidal
flows. For this reason in sections 5 and 6 we have considered the toroidal problem away from
the axis. However, for toroidal configurations a comprehensive discussion of the problem
cannot be done since the complete set of characteristics of equation (6) or equation (15) is not
known. Sections 4, 5 and 6 illustrate this point in establishing a bridge between the toroidal
and straight tokamaks, which suggests a more promising elaboration of the problem in the
future.

Finally, though we know from section 3 that f must be a function of C1 and C2 we
could, in addition, choose f to have different values for different signs of, for instance, vφ .
A known example of this kind of solutions is the case of BGK waves [15], in which the
‘free particles’ have different distributions for different signs of their velocities. See also
[16] for a quasi-neutral treatment. Though toroidal flows can then be constructed, physical
constraints like isotropy of the pressure tensor or constraints on other moments or geometrical
symmetries and, ultimately, collisions could exclude such solutions. Again we are led to look
for the general solutions of equation (6) or equation (15) with ∇f �= 0 in order to discuss the
structure of the macroscopic flows. As mentioned before, this issue remains an open question.
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